
논문 24-49-01-14 The Journal of Korean Institute of Communications and Information Sciences '24-01 Vol.49 No.01
https://doi.org/10.7840/kics.2024.49.1.113

113

Ⅰ. Introduction

With various organizations’ increasing adoption

of cloud computing, ensuring data integrity has

emerged as a critical concern. Cloud Service

Providers (CSPs) offer users convenient options for

storage and processing, but they simultaneously pose

a noteworthy threat to the integrity of user data. As

the users host their data to the cloud storage, they

cannot monitor their data integrity continuously.

Furthermore, CSP might face internal or external

hazards leading to a breach in the security of stored

data.

Data integrity in cloud storage refers to data

reliability. Data integrity violations are also termed

breaches or tampering with users’ data that can

cause critical issues to data trust. In fact, tampering

with data can go unnoticed and fuel malevolent

actions by removing individual entries (i.e.,

eliminating unwanted traces) or modifying specific

chunks of data (i.e., affecting the behavior of data

consumers)[1]. Kaspersky Lab discovered a large

cyber-attack that stole money from account balances

at more than 100 financial institutions globally, with

an estimated worth of almost $1 billion[2]. Due to

the fact that integrity violations are difficult to detect

and highly effective, it make clear how crucial it is

to provide data integrity auditing protocol in cloud

computing.

In the traditional auditing protocol, the user

utilizes a Third-Party Auditor (TPA) to become a

verifier that verifies data integrity stored in cloud

storage[3]. Because stored data may be enormous, it

is impractical and inefficient for the verifier to

w First Author : Ciputra University, Surabaya, Indonesia, Department of Information Technology, elizabeth.nathania@ciputra.ac.id, 학생회원
° Corresponding Author : Dongseo University, College of Software Convergence, nok60@dongseo.ac.kr, 정회원
논문번호：202306-035-A-RN, Received June 28, 2023; Revised September 22, 2023; Accepted October 2, 2023

Blockchain-Based Data Auditing Protocol with Signcryption
Scheme in Cloud Storage

Elizabeth Nathania Witanto,w Sang-Gon Lee°

ABSTRACT

When users store data in cloud service providers (CSPs), they lack full control over what happens to their

data. CSP may unintentionally remove rarely accessed users’ data or encounter internal or external issues that

compromise data integrity. To guarantee the integrity of users’ data stored in cloud storage, an auditing

protocol is necessary. However, considering the massive amount of stored data, it is inefficient for the verifier

to download all the data in advance. Subsequently, the verifier might not have proper resources and expose

the user’s data privacy to other parties. Therefore, this paper proposes a blockchain-based data auditing

protocol with a signcryption scheme in cloud storage. Smart contracts in a blockchain network are used to

solve trust issues between the user, CSP, and the verifier. At the same time, the signcryption scheme is used

to offer privacy-preserving during data transmission also, public verifiability, and blockless verification. The

evaluation and security analysis show that the proposed protocol offers low computational and communication

costs to do auditing tasks while offering desirable properties such as public verifiability, privacy-preserving,

blockless verification, and reliable verifier.

Key Words : blockchain, cloud storage, data auditing, digital signature, encryption, signcryption

mailto:elizabeth.nathania@ciputra.ac.id
mailto:nok60@dongseo.ac.kr

The Journal of Korean Institute of Communications and Information Sciences '24-01 Vol.49 No.01

114

download the user’s data beforehand during data

auditing. Further, the verifier might not have

sufficient computation resources. More importantly,

there is no assurance of neutral data auditing, and

thus endangers users’ privacy. Numerous research

studies have been carried out to offer auditing

protocols for cloud systems. Refs. [4,5] proposed an

identity-based signcryption, and Ref. [6] proposed a

signcryption scheme based on elliptic curve.

Unfortunately, those signcryption schemes did not

provide important properties needed in data auditing

protocol: public verifiability, privacy-preserving, and

blockless verification. Refs. [7-10] delivers a public

verifiability property to their works. Nevertheless, it

lacks privacy-preserving and blockless verification in

the auditing process. The user must forward the

original data to the verifier, threatening the user’s

data privacy. It means the verifier must download

the data first, which is counterproductive. The

privacy of the user’s data is threatened since the

user must send the original data to the verifier.

To tackle this difficulty, this paper suggests a

protocol for auditing cloud data using blockchain

and a signcryption method. Our approach utilizes the

reliability and transparency of blockchain technology

to empower users to authenticate their data’s

consistency, which is saved in cloud-based storage.

Through the utilization of signcryption, this protocol

guarantees not only encryption but also

authentication of data prior to transmission into the

cloud. This feature serves as an extra level of

security for safeguarding sensitive information.

The remainder of the paper is organized as

follows. This paper first describes preliminaries in

Section Ⅱ. Then, this paper presents the proposed

auditing protocol in Section Ⅲ. Discussion and

security analysis about the proposed scheme

equations’ correctness, unforgeability from malicious

CSP and verifier, computational and communication

cost, and comparative analysis of the proposed

scheme will be presented in Section Ⅳ. Finally,

Section Ⅴ presents the paper’s conclusion.

Ⅱ. Preliminaries

2.1 Bilinear Pairings
Let G1 be a cyclic additive group, and G2 be

multiplicative cyclic groups with prime order p, P is

the generator of the group G1. The mapping e : G1

× G2 → G2 is a bilinear map with the following

properties:

1. Bilinear ity: e(aP, bQ) = e(P, Q)ab, and e(P +

R, Q) = e(P, Q)․e(R, Q)∀P, Q, R ∈ G1, a,
b ∈ Zp.

2. Computability: There is an efficient algorithm

to compute e(P, Q)∀P, Q ∈ G1.

3. Non-degeneracy: There exists P ∈ G1 such

that e(P, P) ≠ 1.

This paper considers the following problems in

the additive group G1.

∙Discrete Logar ithm Problem (DLP): Given

two group elements P and Q, find an integer

, such that Q = nP whenever such an

integer exists.

∙Computational Diffie-Hellman Problem

(CDHP): For a, b ∈ , given P, aP, bP,

compute abP.

There are two variants of CDHP:

∙ Inverse Computational Diffie-Hellman

Problem (Inv-CDHP): For a ∈ , given P,
aP, compute a-1P.

∙ Square Computational Diffie-Hellman

Problem (Squ-CDHP): For a ∈ , given P,
aP, compute a2P.

2.2 ZSS Signcryption
C. Ma[9] proposed a signcryption scheme that

provides public verifiability for data auditing.

∙ComGen. Given the security parameters k and

n. Two cyclic groups (G1, +) and (G2,․) of

the same prime order p > 2k, a generator P of

논문 / Blockchain-Based Data Auditing Protocol with Signcryption Scheme in Cloud Storage

115

G1, a bilinear map e : G1 × G1 → G2, three

hash functions H1 : {0, 1}* → Zp, H2 : 
 →

{0, 1}n, and H3 : {0, 1}k, and an symmetric

encryption scheme (E, D). Then, I = {k, n, G1,
G2, P, e, H1, H2, H3, E, D}.

∙KeyGen. Every user picks his private key SKU

from randomly and uniformly. Then, he

computes his public key PKU = SKUP.

∙ Signcrypt. Given a message m ∈ {0, 1}*, the

recipient’s public key PKR and the sender’s

private key SKS. The sender computes:

- pick r {0, 1}n and compute u = (H1(m)

+ SKS + r)-1 mod p.

- compute U = uP ∈ G1,V = r ⊕ H2(U, PKR,
uPKR) and then W = Eκ (m||PKS) where κ =

H3(r).

Finally, form the signcryptext C = (U,V,W).

∙Unsigncrypt by recipient upon receiving (U,V,
W).

- parse C as (U,V,W) and compute r = V ⊕
H2(U, PKR, SKRU).

- compute m||PKS = Dκ (W) where κ = H3(r).

- if e(U, (H1(m) + r)P + PKS) = e(P, P), then

return the message m; otherwise return ⊥
means unsigncryption failure.

∙ Public Ver ifiability. The recipient wants to

prove that the sender signcrypted a message m
to the trusted third party (TTP). So, the

recipient forwards (m,U, r, PKS) to the TTP.

Then, TTP accepts the proof if this equation is

valid e(U, (H1(m) + r)P + PKS) = e(P, P).

ZSS signcryption by [9] gives the public

verifiability property. Unfortunately, it lacks three

other desirable properties, privacy-preserving,

blockless verification, and reliable verifier. The user

must send the original message m to the TTP first.

As a result, the TTP might obtain user information.

Second, the author added the random value r in the

ZSS signature generation. As a result, the user must

also provide the TTP with the r value. The TTP is

harmful because of its ability to construct a

symmetric encryption key, κ, using H3(r). Thus, the

TTP might decrypt the original message m,

threatening data privacy. Third, it is inefficient for

the verifier to download message m for data

auditing, especially if message m is a sizable file.

Therefore, this paper proposed an improved version

of the ZSS signcryption scheme that provides four

properties in data auditing, public verifiability,

privacy-preserving, blockless verification, and

reliable verifier.

Ⅲ. Proposed Scheme

This section explains a blockchain-based data

auditing protocol with a ZSS signcryption scheme

for cloud storage. This paper adopted the

signcryption from [9]. In [9], the author also gives

a public verifiability property. However, his work

lacks privacy-preserving, blockless verification, and

a reliable verifier during auditing because the user

needs to deliver the original message m to the

verifier. By doing so, users’ data privacy would be

disclosed to the verifier. Therefore, this paper gives

three additional advantages besides public

verifiability important for data auditing protocol:

privacy-preserving, blockless verification, and

Notation Description

b, d Security parameter

G1 Cyclic additive group

G2 Multiplicative cyclic group

P Generator of group G1

m Original message

n Total number of shards

V ZSS signature of message m

X Randomness of encryption key generation

Y Encryption of message m

SKS Sender’s secret key

PKS Sender’s public key

SKR Recipient’s secret key

PKR Recipient’s public key

Enc Symmetric encryption operation

Dec Symmetric decryption operation

Table 1. List of notations.

The Journal of Korean Institute of Communications and Information Sciences '24-01 Vol.49 No.01

116

reliable verifier.

This paper picked the ZSS signature because it

required less pairing operation than other short

signatures, such as the BLS signature[11].

Furthermore, ZSS does not need a particular hash

function, i.e., MapToPoint, used in BLS. Users can

use a general hash function such as SHA family or

MD5[11]. In the proposed protocol, a user will store

a file in CSP. First, he will compute a Signcrypted

data s. Then, he will send σ to the CSP. Before

CSP stores data in their storage, it will unsigncrypt

the s. This paper provides a list of notations used

for the remainder of this chapter in Table 1 and

describes the detailed process as follows.

3.1 Setup Phase
∙ ParamGen. Given security parameter b and d.

Let G1 be a cyclic additive group, G2 be

multiplicative cyclic groups with prime order

p, and P be the generator of group G1. The

bilinear mapping e : G1 × G2 → G2, three hash

functions Hash1 : {0, 1}* → Zp, Hash2 : 


→ {0, 1}d and Hash3 : {0, 1}d → {0, 1}b, and

symmetric encryption scheme (Enc, Dec).

Therefore the system parameters are {b, d, G1,
G2, P, e, Hash1, Hash2, Hash3, Enc, Dec}.

∙KeyGen. Sender chooses a random number

from Zp, sets it as his secret key SKS, and

computes his public key PKS = SKSP. The

recipient chooses a random number from Zp,

sets it as his secret key SKR, and computes his

public key PKR = SKRP.

∙ Signcryption. User as sender S generated a

signcryption s for each message m as follows.

1. Generates v = (Hash1(m) + SKS)-
1.

2. Choose r {0, 1}d and generates V = vP,

X = r ⊕Hash2(V, PKR, vPKR). Then,

generates k = Hash3(r), a symmetric

encryption key. So, Y = Enck(m).

3. Therefore the signcryption s = (V,X,Y)

where V is a ZSS signature of message m,

X is the randomness of encryption key

generation, and Y is the encryption of

message m.

∙Unsigncryption. After receiving s = (V, X,Y)

from the sender S, the recipient R start

unsigncryption process.

1. R parse s to get (V, X,Y).

2. Computes r = X ⊕ Hash2(V, PKR ,VSKR)

and k = Hash3(r).

3. Decrypt Y to get message m. So, m =

Deck(Y).

4. If the Equation (1) holds, unsigncryption

success; otherwise, R rejects s from the

sender.

(1)

To add randomization to the signature generation

process, the author of [9] inserts a random variable

r. The consequence is the user must provide the

verifier the r. As explained earlier, this presents a

concern since r can create a symmetric encryption

key using the Hash3(r) function. In this way, the

verifier threatens data privacy by being able to

decrypt the original message. Different from [9], by

removing the r, the proposed scheme prevents

leakage of the encryption key to the verifier.

Furthermore, the original message m will not be

passed to the verifier during auditing in the proposed

scheme. So, it assures data privacy and increases

verification efficiency because the verifier does not

need to download the original message m
beforehand.

3.2 Store File Phase
This phase explains storing the user’s data in the

CSP. The user and CSP are involved, as shown in

Fig. 1. This paper presents details as follows.

1. User divided data F into n shards of m. F =

{m1, m2, m3, ..., mn}. The user does a

signcryption process for each data shard and

generates si, where i is the index of each data

shard. Therefore the Signcryption si = (Vi, Xi,
Yi). Set of signcrypted data is Sign = {s1, s2,
s3, ..., sn}. Then, the user stores a set of

signcryption Sign to the CSP.

2. User stores set of Signature Sn = {V1, V2, V3,

논문 / Blockchain-Based Data Auditing Protocol with Signcryption Scheme in Cloud Storage

117

..., Vn} to the smart contract.

3. CSP verify data from user by parsing each si

to (Vi, Xi, Yi).

4. CSP get Sign from the smart contract.

5. Then CSP does the unsigncryption process and

compares Vi from the smart contract and the

user. If equal, store the user’s data; otherwise,

reject it.

3.3 Data Auditing Phase
In the data auditing phase, three entities are

involved: user, CSP, and verifier, as shown in Fig.

2. The user has stored data in the CSP storage.

Then, he wants to check his data integrity by

publishing an auditing task to the smart contract.

Then, other users that joined the blockchain network

can be the verifier by applying to the smart contract.

The appointed user becomes the verifier for the

corresponding auditing task. Then, the verifier

generates a challenge variable and sends it to the

corresponding CSP. After receiving the challenge

from the verifier, CSP generates proof and sends it

to the verifier. Next, the verifier will verify whether

the proof given by CSP is correct through the

validity of an equation. The details are described as

follows.

1. When the user wants to verify his stored data

in CSP, he publishes an auditing task to the

smart contract. This task will be broadcast so

anyone who joins the blockchain network can

get this notification.

2. Other users who want to become verifiers

apply to a smart contract for the corresponding

auditing task.

3. Smart contract will check the credibility points

and current deposit of the applied verifier. It

will choose a user with high credibility points

and send the file that will be verified to the

verifier.

4. Then user generates a set of random numbers

{i}i∈I for the auditing task, where i is the

index of stored challenged data shard. Then, he

sends those random numbers and also the set

of Signature of the challenged data shards Sn
= {Vi}i∈I to the verifier.

5. Upon receiving request from user, verifier

choose randomly fi from Zp and generates a

challenge chal = {i, fi}i∈I. Then send chal to

the corresponding CSP.

6. After receiving chal from verifier, CSP

computes r i = Xi ⊕ Hash2(Vi, PKR, ViSKR).

Then he can computes ki = Hash3(r i) to

decrypt Yi. Therefore mi = Decki(Yi). After that,

CSP generates proof d and sends it to the

verifier.

(2)

7. Verifier get the Sign from the smart contract.

8. Then the verifier generates proof w.

(3)

Subsequently, the verifier checks whether

Equation (4) holds. If it holds, CSP

successfully proves the user’s data integrity;

otherwise, CSP failed, and the auditing task

also failed.

(4)

9. Finally, the verifier reports the auditing results

to the smart contract. The smart contract will

Fig. 1. Store File Scheme.

Fig. 2. Data Auditing Protocol.

The Journal of Korean Institute of Communications and Information Sciences '24-01 Vol.49 No.01

118

broadcast the result to the network and update

the credibility points and balance for the

corresponding auditing task’s participants.

3.4 Credibility Points and Incentive Mechanisms
This paper aims to attract verifiers to participate

in auditing tasks by proposing credibility points and

incentive mechanisms. This mechanism also could

prevent arbitrary behavior by penalizing its actors

who do not comply with the rules.

∙Users, verifiers, and CSPs must register

themselves to the smart contract. To participate

in the process, users, verifiers, and CSPs need

to stake/ make a deposit as a guarantee. In the

case of dishonest/malicious behavior, their

deposit will be decreased.

∙They will be given initial credibility points.

This point shows the credibility of each actor.

The higher the points means, the actor more

credible and trustable.

∙Each actor that does their job faithfully will be

given additional points and incentives as a

reward; otherwise, they will get penalty points

and deduct their deposit.

∙ In the case of a user, if the user does

something malicious, for example, deceiving

the verifier/ CSP, the user will get a penalty by

decreasing the credibility points and deposit.

∙ In the case of the verifier, if the verifier does

their job faithfully during the auditing task,

they will get additional points. Otherwise, their

points will be decreased.

∙CSPs also will be given credit points that show

their credibility. If CSPs fails to prove users’

request, their credit points will decrease.

∙ If their deposit is 0, they cannot participate in

any process. They will get suspended for

several amounts of time.

Ⅳ. Evaluation and Security Analysis

4.1 Correctness
Below is the correctness proof of the signcryption

scheme shown in Equation (1).

e(Hash1(mi)P + PKS,V)

= e(Hash1(mi)P + PKS,(Hash1(mi) + SKS)-1P)

= e((Hash1(mi) + SKS)P, (Hash1(mi) + SKS)-1P)

= e(P, P)(Hash1(mi)+SKS)∙(Hash1(mi)+SKS)
-1

= e(P, P)

Below is the correctness proof of the data

auditing protocol shown in Equation (4).

e(d, w)

= e(Pi∈I fiHash1(mi)P + PKS, Pi∈I Vi fi
-1)

= e(Pi∈I fi(Hash1(mi) + SKS)P, Pi∈I(fi(Hash1(mi)

+ SKS))-1P)

= e(P, P)Pi∈I fi(Hash1(mi)+SKS)∙Pi∈I(fi(Hash1(mi)+SKS))-
1

= e(P, P)

4.2 Unforgeability
This paper presents an unforgeability of two cases

in the proposed protocol, malicious CSP cannot

forge proof d to deceive the verifier, and malicious

verifier cannot forge the auditing results.

∙Malicious CSP.

Malicious CSP cannot forge proof d because

every time the verifier sends a challenge, a random

value f will be given in the chal variable. CSP will

generate proof d based on f from the verifier as

shown in Equation (2), and value f is different for

each data shard. Even we further assume that

malicious CSP forges d, namely d ≠ dˊ. The

auditing process done by the verifier in Equation (4)

shows that the verifier must validate dˊ with two

other variables, the sender’s public key PKS and

proof w generated by the verifier, which also

consists of f value. Therefore, the dˊ cannot make

Equation (4) hold. Another case is when a malicious

CSP tries to deceive the verifier by replacing

challenged data block mj with another data block mk
when the former data block is broken. Accordingly,

the proof dˊ becomes

(5)

So, the Equation (4) can be represented as

논문 / Blockchain-Based Data Auditing Protocol with Signcryption Scheme in Cloud Storage

119

(6)

Hence, Hash1(mk) = Hash1(mj). However,

Hash1(mk) cannot be equal to Hash1(mj) due to the

anti-collision property of the hash function.

Therefore, it is infeasible to make Equation (6) hold,

and the proof from CSP cannot pass the auditing

process.

∙Malicious Ver ifier .

The malicious verifier cannot forge auditing

results because the verifier must generate proof w
that requires V, which is a signature generated by

the user as shown in Equation (3). The V values are

stored in the smart contract, which is very difficult

to be tampered with. Even if we further assume that

the malicious verifier forges proof w, to generate

variable V , the malicious verifier needs the user’s

private key SKS and original message mi. The

proposed scheme provides privacy-preserving and

blockless verification properties, meaning the verifier

can verify the data without receiving the original

message mi from the user or CSP. So, without the

possession of those two variables, SKS and mi, it is

impossible to generate a forged mˊi and make

equation (Hash1(m í) + SKS)-1P = (Hash1(mi) + SKS)-1P
holds. Both malicious CSP and verifier cannot

calculate the user’ s private key from the public key

under the InvCDHP assumption. Furthermore, in the

auditing process, the verifier needs to validate w
with two other variables, the sender’s public key

PKS and proof d generated by CSP as shown in

Equation (4). Therefore, it is infeasible to make

equation e(d , wˊ) = e(P, P) holds, where wˊ≠w.

4.3 Computational Cost
To analyze the proposed scheme performance,

this paper compares the scheme’s computational cost

with four other signcryption schemes in Table 2.

This part will discuss several aspects: signature type,

computational cost, signature size, and time

complexity. First, signature type. The proposed

scheme and [9] use the ZSS signature scheme.

While [12] uses the BLS signature and [13], [14]

uses the attribute-based signature. The ZSS signature

is more efficient because it has fewer pairing

operations than the BLS signature used in [12]. In

addition, the ZSS signature does not need a

particular hash function like in the BLS signature

(i.e., MapToPoint). It can use a general hash

function like the SHA family or MD5.

The second is computational cost. Table 2 also

shows costs for the sender and recipient that

compute signcryption and unsigncryption,

respectively. The pairing and exponential operations

are considered highcost operations. Unfortunately,

the attribute-based signature required more

exponential operations than other schemes. In the

[13], the sender needs to do nine exponential

operations, and in [14], the sender requires eight

exponential operations. Unlike the two previous

schemes, the BLS-based signature in [12] required

the sender to do fourteen multiplication and two

pairing operations.

However, in the proposed scheme, the

computational cost for the sender is 1Exp + 1Inv +

1Mul + 1Add + 3Hash, and for the recipient is 1Add
+ 2Hash + P. The sender needs to do fewer

exponentiation and multiplication operations than

other schemes. The recipient also has fewer

operations when doing an unsigncryption scheme.

Furthermore, in the unsigncryption scheme, the

bilinear pairing of e(P, P) can be precomputed. So,

there is only one pairing operation. In addition, even

though the proposed scheme has more hash

Table 2. Computational Cost and Time Complexity
Comparison.

S = Sender, R = Recipient, n = number of message, Add =
addition, Hash = hash function, Mul = multiplication, Inv =
Inverse, Exp = exponentiation, P = Bilinear Pairings, n/ a = not
available.

The Journal of Korean Institute of Communications and Information Sciences '24-01 Vol.49 No.01

120

operations, the cost hash function is negligible

compared to the other operations. Nevertheless, the

computational cost is the same as the based

reference, which is [9].

Another variable to measure the proposed scheme

performance is to analyze the signature length and

time complexity. Regarding signature length, the

BLS signature size is approximately 160 bits[15],

while ZSS is around 260 bits[9]. The bigger the

signature size, the longer the time needed to

complete signcryption or unsigncryption. In terms of

time complexity, the proposed scheme and four

other schemes have linear time complexity (O(n)),

except the recipient part in [13] that has constant

time complexity (O(1)). The former indicates that

the time in this instance, relies on the input n. The

greater the value of n, the longer the required time.

The latter shows that the required time is always

constant and does not depend on the input variable.

The discussion above shows that[12] has a shorter

signature size but a high computational cost. The

proposed scheme and [9] have lower computational

costs than [12], but this paper has a more extended

signature size. However, with those conditions, the

proposed scheme offers more advantages than other

schemes. The trade-off is this paper can achieve

desirable properties in the data integrity auditing

process, public verifiability, privacy-preserving,

blockless verification, and reliable verifier. More

importantly, the proposed scheme can accomplish

three more properties with the exact cost as the

primary reference [9].

4.4 Communication Cost
This section presents the communication cost

comparison between the proposed scheme and the

primary reference[9]. Communication cost is the

amount of data transfer involved in a protocol. For

the proposed scheme, this paper measures the

communication cost of the data auditing scheme

presented in Fig. 2. Bits are used as the

measurement unit. Three entities that interacted in

the proposed protocol are the user, CSP, and

verifier. In Table 3, there are five interactions

among entities in the proposed scheme: send

signcryption, send challenged data shards, send

proof d , send chal, and send verification results. All

of those messages are unicast messages.

In the proposed scheme’s auditing process, file F
is divided into n shards of m. To give a practical

example in the analysis, this paper denotes the size

of file F the same as that is used in [16], which is

40M. Then, file F is divided into 10,000 data

shards, so each size of mi is 4kb = 32,000 bits,

where i is the index of data shards. When the user

asks a verifier to do the auditing process, he

randomly sends several challenged data shards; this

paper denotes it as c. Assuming c is half of n, c is

5,000 data shards. Therefore, according to Table 3,

the total communication cost for all entities in the

proposed scheme is 2,147kb. While in [9] scheme,

entities have three interactions: send signcryption,

forward parameters (mi, U, r, PKs), and return mi.

All of those messages are unicast messages. This

paper denotes values n and c, the same as in the

previous example. Therefore, the total communication

cost for all entities in [9] is 41,417kb.

The results show that the total communication

cost in the proposed scheme is lower than[9]. This

paper provides blockless verification that allows the

auditing process to happen without accessing the

original message. In contrast, the communication

cost in [9] is higher because the user and CSP must

send an original message shard mi. This scheme’s

communication cost depends on the size of mi. For

the example, the size of mi is 32,000 bits. As a

result, in this case, the total communication cost of

Table 3. Communication cost comparison.

Note : the measurement unit is in bits, n = number of data
shards, c = number of challenged data shards.

논문 / Blockchain-Based Data Auditing Protocol with Signcryption Scheme in Cloud Storage

121

[9] is almost twenty times higher than ours.

Nevertheless, the proposed scheme offers a cheaper

communication cost than [9].

4.5 Comparative Analysis
In this section, this paper presents an analysis of

the compatibility of the proposed scheme with the

three desirable properties. Also, this paper compares

the proposed scheme with four other works related

to data auditing using the signcryption schemes in

Table 4 as follows.

∙ Public Ver ifiability.

The proposed scheme provides the public

verifiability property shown in Equation (4), where

this paper presented a use case in which a verifier

can verify data stored in CSP. So the user has the

option to choose someone other than CSP to carry

out the data integrity checking process. The

comparison with four other works in Table 4 shows

that only [9] fulfilled this property. Unfortunately,

only the authorized receiver may verify the data in

[12-14] since their protocols did not allow other

parties to verify saved data.

∙ Privacy-preserving.

The proposed scheme can ensure that the verifier

cannot know the users’ data during auditing. As

shown in Equation (2), CSP sends proof d to the

verifier that is generated not from the user’s original

data. In addition, the verifier only computes the

message’s signature Vi during Equation (3) creation,

not the original data. Therefore, the proposed

scheme can prevent data leaks to the verifier during

auditing. The other works that provide this property

are [12-14]. While protocol in [9] requires the user

to submit to the verifier the original message that

has to be verified. Hence it does not support this

property. This would expose the user’s private

information to third parties.

∙Blockless Ver ification.

The proposed scheme supports blockless

verification. In blockless verification, the verifier is

not required to download all the challenged data

blocks. Equation (4) demonstrates that while the

verifier performs an auditing process, no original

data is downloaded from CSP. It increases efficiency

rather than downloading the data beforehand. Table

4 shows that only[14] supports this property. While

three other works[9,12,13] did not provide this property

since the verifier needs the original message in order

to complete the auditing task, the availability of this

property was not provided by them.

∙Reliable Ver ifier .

The proposed scheme and two other works

[13,14] provide a reliable verifier using blockchain

technology. Blockchain enables transparency

between users, CSPs, and verifiers through its

decentralized nature. Furthermore, the proposed

protocol assures a credible verifier by enforcing

credibility points and incentive mechanisms for the

honest verifier. However, two other works [9,12] do

not support this attribute since they rely on TPA,

which is not the best solution in actual

circumstances.

Ⅴ. Conclusion

This paper proposed a blockchain-based data

auditing protocol in a cloud storage with an

improved ZSS signcryption scheme that provides

desirable properties such as public verifiability,

privacy-preserving, blockless verification, and

reliable verifier. A use case for signcryption

implementation in data auditing is also presented in

this paper that aims to ensure data integrity,

confidentiality, and non-repudiation. Ultimately, this

paper also presented security analysis by

demonstrating the validity of the proposed scheme

equation, its unforgeability in the presence of

malicious CSP and verifiers, examining the

Table 4. Comparison of Desirable Properties.

The Journal of Korean Institute of Communications and Information Sciences '24-01 Vol.49 No.01

122

computational and communication cost, and finally,

by presenting comparative studies analysis with four

other works. The comparative studies show that only

the proposed scheme can fulfill the four desirable

data auditing protocol properties. The proposed

protocol is also equipped with credibility points and

incentive mechanisms to attract the participation of

verifiers. Furthermore, it could also prevent arbitrary

behavior of participants by introducing penalty

points. In addition, the proposed system can also

accomplish three more attributes than the primary

reference with the exact computational cost,

according to the examination of computational cost

and time complexity. Subsequently, this paper’s

communication cost analysis shows that the

proposed auditing protocol can achieve lower

communication costs than the primary reference.

Those analyses implied that this paper offers more

advantages in data auditing protocol through

blockchain and improved ZSS signcryption.

References

[1] E. Gaetani, L. Aniello, R. Baldoni, F.

Lombardi, A. Margheri, and V. Sassone,

“Blockchain-based database to ensure data

integrity in cloud computing environments,”

University of Southampton Institutional

Repository, 2017.

[2] Fran Howarth, “Sabotage: The latest threat to
the financial/banking industry,” (Aug. 2016),

[Online]. Available: https://ibm.co/3LND6tE

(visited on 08/30/2022).

[3] N. Garg and S. Bawa, “Comparative analysis

of cloud data integrity auditing protocols,” J.
Netw. and Comput. Appl., vol. 66, pp. 17-32,

2016.

[4] B. Libert and J.-J. Quisquater, “A new identity

based signcryption scheme from pairings,” in

Proc. 2003 IEEE Inf. Theory Wkshp. (Cat. No.
03EX674), pp. 155-158, 2003.

[5] X. Boyen, “Multipurpose identity-based

signcryption: A swiss ary knife for

identity-based cryptology, crypto’ 03, lncs

2729,” in Annual Int. Cryptology Conf., pp.

383-399, Berlin, Heidelberg: Springer Berlin

Heidelberg, 2003.

[6] W.-J. Cui, Z.-J. Jia, M.-S. Hu, L.-P. Wang, et

al., “A new signcryption scheme based on

elliptic curves,” in Int. Conf. Secur. and
Privacy in New Comput. Environ., pp.

538-544, Springer, 2019.

[7] F. Bao and R. H. Deng, “A signcryption

scheme with signature directly verifiable by

public key,” in Int. Wkshp. Public Key
Cryptography, pp. 55-59, Springer, 1998.

[8] S. S. Chow, S.-M. Yiu, L. C. Hui, and K.

Chow, “Efficient forward and provably secure

id-based signcryption scheme with public

verifiability and public ciphertext

authenticity,” in Int. Conf. Inf. Secur. and
Cryptology, pp. 352-369, Springer, 2003.

[9] C. Ma, “Efficient short signcryption scheme

with public verifiability,” in Information
Security and Cryptology, vol. 4318, Springer

Berlin Heidelberg, pp. 118-129, 2006.

(https://doi.org/10.1007/11937807_10)

[Online]. Available: http://link.springer.com/1

0.1007/11937807_10 (visited on 07/18/2022).

[10] M. Toorani and A. Beheshti, “A directly
public verifiable signcryption scheme
based on elliptic curves,” in 2009 IEEE
Symp. Comput. and Commun., pp. 713716,

2009.

[11] F. Zhang, R. Safavi-Naini, and W. Susilo, “An

efficient signature scheme from bilinear

pairings and its applications,” in Public Key
Cryptography PKC 2004, vol. 2947, Springer

Berlin Heidelberg, pp. 277-290, 2004.

(https://doi.org/10.1007/978-3-540-24632-9_2

0).

[Online]. Available: http://link.springer.com/1

0.1007/978-3-54024632-9_20 (visited on 07/18

/2022).

[12] A. Alamer, “An efficient group signcryption

scheme supporting batch verification for

securing transmitted data in the internet of

things,” J. Ambient Intell. and Humanized

논문 / Blockchain-Based Data Auditing Protocol with Signcryption Scheme in Cloud Storage

123

Comput., pp. 1-18, 2020.

[13] N. Eltayieb, R. Elhabob, A. Hassan, and F. Li,

“A blockchain-based attribute-based signcryp-

tion scheme to secure data sharing in the

cloud,” J. Syst. Architecture, vol. 102, p. 101

653, 2020.

[14] X. Yang, T. Li, W. Xi, A. Chen, and C.

Wang, “A blockchain-assisted verifiable

outsourced attribute-based signcryption scheme

for ehrs sharing in the cloud,” IEEE Access,

vol. 8, pp. 170 713-170 731, 2020.

[15] D. Boneh, B. Lynn, and H. Shacham, “Short

signatures from the weil pairing,” in Int. Conf.
The Theory and Application of Cryptology and
Inf. Secur., pp. 514-532, Springer, 2001.

[16] C. Zhang, Y. Xu, Y. Hu, J. Wu, J. Ren, and

Y. Zhang, “A blockchain-based multi-cloud

storage data auditing scheme to locate faults,”

IEEE Trans. Cloud Computing, 2021.

Elizabeth Nathania Witanto

Aug. 2015 : Bachelor’s degree,

Petra Christian University,

Surabaya, Indonesia

Aug. 2020 : M.Sc. degree,

Dongseo University, Busan,

South Korea

Aug. 2023 : Ph.D. degree, Dongseo University,

Busan, South Korea

Sep. 2023~Current : Lecturer, Ciputra University,

Surabaya, Indonesia

<Research Interest> blockchain and cloud

computing

[ORCID:0000-0003-1085-4272]

Sang-Gon Lee

1986 : BEng. degree, Kyungpook

National University

1988 : MEng. degree, Kyungpook

National University

1993 : Ph.D. degree, Kyungpook

National University

Aug. 2003~July 2004 : Visiting

Scholar at QUT, Australia

July 2012~Jun. 2013 : Visiting Scholar at the

University of Alabama at Huntsville, USA

1997~Current : Professor, Dongseo University, Busan,

South Korea

<Research Interests> Information security, network

security, wireless mesh/sensor networks, and the

future Internet.

[ORCID:0000-0002-6678-0500]

